
in the Cloud Report
Aacker Tactics and Techniques Revealed

Inside This Report

2

Foreword 3
About the Orca Research Pod 4
Executive Summary 6
Methodology 10
Research Findings 11

1. GitHub Honeypot 12
2. AWS S3 Bucket Honeypot 17
3. SSH Honeypot 22
4. HTTP Honeypot 24
5. DockerHub Honeypot 25
6. ECR Honeypot 26
7. Elasticsearch Honeypot 27
8. Amazon EBS (AMI) Honeypot 28
9. Redis Honeypot 29

Summary 31
Key Recommendations 36
About Orca Security 41

Foreword In an era where cloud computing has become an integral
part of modern business operations, ensuring the security of
cloud environments is of paramount importance. Cybercriminals
are relentlessly seeking to exploit vulnerabilities and
misconfigurations to gain unauthorized access to valuable
resources. The more security teams can understand aacker
tactics and techniques, the more eective they will be at
defending themselves.

For this purpose, the Orca Research Pod launched a honeypot
research project to simulate misconfigured resources in the
cloud, and then monitor whether bad actors would take the bait
while shedding light on the latest aack vectors and providing
essential insights for fortifying cloud defenses.

"Know thy enemy and know
yourself; in a hundred bales,
you will never be defeated.”
Chinese general Sun Tzu.

3

https://orca.security/about/orca-research-pod/

Orca Security, Highly
Confidential

About
the Orca
Research Pod

The Orca Research Pod is a group of cloud security
researchers that discover and analyze cloud risks
and vulnerabilities to strengthen the Orca Cloud
Security Platform and promote cloud security best
practices. In addition, the Orca research team
discovers and helps resolve vulnerabilities in cloud
provider platforms so organizations can rely on a safe
infrastructure in the cloud.

1. AWS Superglue
2. Azure AutoWarp
3. AWS BreakingFormation
4. Databricks

2021

1. Azure SynLapse
2. Azure FabriXxs
3. Azure CosMiss
4. Azure Digital Twins SSRF
5. Azure Functions App SSRF
6. Azure API Management SSRF
7. Azure Machine Learning SSRF
8. Azure Super FabriXss

2022

1. Azure Storage Account Keys
Exploitation Path

2. Two Azure PostMessage IFrame
Vulnerabilities

2023

14+ vulnerabilities
discovered on
AWS, Azure, and
Google Cloud

Copyright Orca Security 2023

4

https://orca.security/about/orca-research-pod/
https://orca.security/resources/blog/aws-glue-vulnerability/
https://orca.security/resources/blog/autowarp-microsoft-azure-automation-service-vulnerability/
https://orca.security/resources/blog/aws-cloudformation-vulnerability/
https://orca.security/resources/blog/databricks-vulnerability-research-early-detection/
https://orca.security/resources/blog/synlapse-critical-azure-synapse-analytics-service-vulnerability/
https://orca.security/resources/blog/fabrixss-vulnerability-azure-fabric-explorer/
https://orca.security/resources/blog/cosmiss-vulnerability-azure-cosmos-db/
https://orca.security/resources/blog/ssrf-vulnerabilities-azure-digital-twins/
https://orca.security/resources/blog/ssrf-vulnerabilities-azure-functions-app/
https://orca.security/resources/blog/ssrf-vulnerabilities-azure-api-management/
https://orca.security/resources/blog/ssrf-vulnerabilities-azure-machine-learning/
https://orca.security/resources/blog/super-fabrixss-azure-vulnerability/
https://orca.security/resources/blog/azure-shared-key-authorization-exploitation/
https://orca.security/resources/blog/azure-shared-key-authorization-exploitation/
https://orca.security/resources/blog/examining-two-xss-vulnerabilities-in-azure-services
https://orca.security/resources/blog/examining-two-xss-vulnerabilities-in-azure-services

Copyright Orca Security 2023

The goal of our honeypot research was to
find out the following:

Which of the popular cloud services are most frequently targeted by aackers?

How long does it take for aackers to access public or easily accessible resources?

How long does it take for aackers to find and use leaked secrets?

What are common aack routes and methods?

How can we leverage this information to increase defenses?

This research aims to equip
cloud security professionals, DevOps,
DevSecOps, CISOs, and development
leaders with valuable insights and practical
recommendations for safeguarding their cloud
environments, and in doing so, help to secure
the cloud for everyone.

5

Bar Kaduri
Threat Research Team Leader, Orca Security

Tohar Braun
Research Technical Lead, Orca Security

https://www.linkedin.com/in/bar-kaduri-5954b7127/
https://www.linkedin.com/in/tohar-braun-063366117/

Orca Security, Highly
Confidential

Executive Summary

In some ways, our study confirmed what is already widely
known: aackers are constantly scanning the Internet
for lucrative opportunities. What did surprise us however
was how fast this was happening:

On GitHub, aackers weaponized our leaked keys within minutes. It
only took 2 minutes until one of our GitHub honeypot keys was
used.

The first access to our HTTP honeypot was within 3 minutes.

We saw access to our SSH honeypot within 4 minutes. There were
no aempts to use the key we planted, but we saw hundreds of
aempts to install malware and cryptominers on our server.

Our S3 Buckets were accessed in one hour and the keys were used
within 8 hours.

It took aackers..

2 minutes
to exploit keys exposed on GitHub

3 minutes
to access our HTTP Honeypot

4 minutes
to access our SSH Honeypot

1 hour
to access our S3 Buckets

Discovery is fast
1

Copyright Orca Security 2023

6

Orca Security, Highly
Confidential

Executive Summary

Even though public assets on some resources are discovered much
faster than others, it’s clear that wherever you store public data, it
will be compromised at some point - whether it’s in minutes, hours,
days, or months.

Certain assets, such as SSH, are highly targeted for
malware and cryptomining. We saw hundreds of
aempts by aackers to install malware and
cryptominers on our SSH honeypot.

The more popular the resource, the easier it is to
access, and the more likely it is to contain
sensitive information -> the more aackers will
do (automatic) reconnaissance.

Aackers target each
resource dierently

2

Copyright Orca Security 2023

7

Time to Asset Access

3 mins
HTTP

2 mins
GitHub

4 mins
SSH

2 hours
Elasticsearch

2.5 hours
Redis

1 hour
S3 Bucket

4 months
AWS ECR

Time to Key Usage

3 4

2 2.5

1

4

2 mins
GitHub

8 hours
S3 Bucket

8

4 months
AWS ECR

4

No aempts to use the keys on:
HTTP, SSH, Elasticsearch, or Redis

2

2

No aempts to access:
DockerHub or Amazon EBS

Orca Security, Highly
Confidential

Executive Summary

Except for the breached keys from AWS in GitHub, no keys were
reported as breached, despite the fact that some of them were used by
unauthorized users.

Even if key permissions are locked down (as they were on GitHub), the
key is not entirely blocked. Although the policy denies most
permissions, an aacker can potentially still perform malicious actions
on some services, such as RDS, EKS, and Elasticsearch.

This means that defenders need to be extra careful not to include
secrets on S3 Buckets, and to a lesser extent Elastic Container Registry,
since we also saw relatively fast key usage from these resources.

AWS keys were automatically locked
down on GitHub, but..Automated key protection

cannot be relied on

3

Secrets are automatically locked down on GitHub but not on any
of the other resources, such as ECR and S3 Buckets.

Using the AWS Compromised Key policy, which
denies access to destructive actions..

Even with this policy applied, if the leaked
credentials have a lot of permissions, an aacker

can still do damage.

Even though permissions of the leaked keys were
locked down as soon as the git push occurred..

Copyright Orca Security 2023

8

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSCompromisedKeyQuarantineV2.html

Orca Security, Highly
Confidential

Executive Summary

No region is safe
4

Although we saw 50% of the AWS key
exploitation in the US, usage also occurred in
almost every other region, including Canada,
Asia Pacific, Europe, and South America.

As more and more
organizations around the
world adopt the cloud,
aackers are not just sticking
to North America, but are
opportunistically targeting
every possible region.

AWS regions where API calls were
made with leaked keys on GitHub:

Copyright Orca Security 2023

United States 50%

Asia Pacific 23%

Canada 3%

South America 4%

Europe 20%

9

Orca Security, Highly
Confidential

Data collection
Our research was conducted between

January and May 2023. To set up our
‘honeypots’ and simulate misconfigured
resources, we basically broke all security
best practices (don’t try this at home!):

We started by creating a number of
resources in dierent environments that
allowed public or easy access. Next, we

placed a secret - in this case AWS keys - in
our honeypots. And then we observed as

aackers took the bait..

Research Methodology
The purpose of this research was to achieve a beer understanding of how
quickly aackers find assets and use secrets in each scenario. Armed
with this information, security teams can establish the right protections
to keep assets from being exposed, and perform the most eective
remediations when an exposed asset has been found.

In our research we measured the following:

• Probability of asset access: How likely is it that an accidentally exposed asset will be accessed
and how quickly? Does this likelihood dier depending on the resource environment? We tracked
this by monitoring traic to the services using t-pot1 or native access logs.

• Tactics applied in asset access: If assets are accessed, what types of commands are used most
often? What does this tell us about aacker tactics? We were also able to track this by monitoring
traic to the services using t-pot1 or native access logs.

• Probability of secret usage: How likely is it that an exposed secret in that asset will be used? By
using canary AWS tokens (valid access tokens that act as tripwires), we could see when, where,
and how they were used without providing the aacker access to anything that was actually of
interest.

• Tactics applied in secret usage: If exposed secrets are used, what type of tactics do aackers
use the most? What does this tell us about their strategies?

1 hps://github.com/telekom-security/tpotce
Copyright Orca Security 2023

10

https://orca.security/resources/cloud-risk-encyclopedia/exposed-aws-key/

Research Findings

Orca Security, Highly
Confidential

GitHub Honeypot - Setup

1

1

We created a public
repository with two
Python files.

2 One of the Python files contained an AWS access key
(secret and access keys).

3 The second one contained a bucket (s3://switanok-zustricz)
with an access key in it.

Although GitHub doesn’t provide access logs to public repos, we could tell
repo access by tracking usage of the keys in the repos.

Why is there significant leakage risk
on GitHub?

GitHub is a source control system that stores intellectual
property such as software source code, build scripts, and
Infrastructure as Code scripts.

It is not uncommon for organizations to accidentally leak
secrets, database passwords and other sensitive data in
code commits. This is especially problematic as it’s
relatively easy for aackers to discover public GitHub
repositories and commits.

In view of this potential risk, we wanted to find out how
quickly aackers would discover and weaponize leaked
secrets in GitHub commits.

Copyright Orca Security 2023

50%
of organizations store sensitive data
in at least one Git repository

12

https://github.com/mcmc-the-pelican/test-production
https://github.com/mcmc-the-pelican/test-production
https://github.com/mcmc-the-pelican/test-production/blob/main/s3_sync_with_keys.py
https://orca.security/resources/blog/the-top-5-cloud-security-risks-of-2023/

Orca Security, Highly
Confidential

The good news is that the leaked keys were quarantined by AWS as
soon as the git push occurred; The AWS Compromised Key
Quarantine policy for the leaked key was added at the exact same
time as the git push was commied.

GitHub Honeypot - Key Usage

Usage of the AWS key occurred quickly and from many sources.
It took only 2 minutes for an aacker to use the leaked key.

In other words, if
the leaked

credentials have a
lot of permissions,

an aacker can still
do damage.

However, even with this policy applied, this
does not mean that the key is entirely
blocked. Although the policy denies most
of the EC2, S3 Bucket, Lambda, and IAM
service permissions, aackers can still
access all other permissions a user might
have, such as Amazon Relational Database
Service (RDS), Amazon Elastic Kubernetes
Service (EKS), and Opensearch.

It only
took:

2 minutes
before keys were exploited

Beware of the Git History
We decided to see what would happen if we created a new
commit that removed the secret while leaving the original
commit in the Git history. We observed that the keys that were
published in old commits were rescanned after a newer commit,
indicating that aackers are searching the Git History for keys
as well. Even though fewer actors discovered and used the key
from the history than from the original commit, it is important to
make sure that any keys are not only removed from the newest
commit, but also from the commit in the history.

Copyright Orca Security 2023

13

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSCompromisedKeyQuarantineV2.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSCompromisedKeyQuarantineV2.html

Orca Security, Highly
Confidential

• “GetCallerIdentity” (25%) was the most used API call, followed
by “GetAccount” (14%), which suggests that actors are trying to
test the validity of the secret and gather more information about
the owner of the exposed key.

GitHub Honeypot - Key Tactics

The majority of key usage was around reconnaissance:
aackers were trying to find out whether the key provided
access to any resources that could be of interest.

• Next “ListUsers” (8%), and “DescribeInstances” (6%) are used
most commonly, which point to reconnaissance commands where
the actor is trying to find out what the key provides access to.

• “ListHostedZones” (5%) is of further interest because it can
enable an aacker to further enumerate their target’s footprint
and look for additional access.

API calls made with the keys
leaked on GitHub:

Copyright Orca Security 2023

GetCallerIdentity 25%

GetAccount 14%

Other 14%

Li
st

Us
er

s
 8

%

Describ
eInstances 6

%ListBuckets 6%

List Certificates 6%

ListClusters 6%

ListHostedZones 5%
ListIdentities 5%

ListTopics 5%

14

Orca Security, Highly
Confidential

GitHub Honeypot - Aacker Close Up

A closer look at the individual actors shows that most start initial
reconnaissance and then give up, but a small number of actors
are very persistent.

Observations

Testing key validity

Malicious intent

Reconnaissance Aempting to access data

API calls that the top source IPs tried with our keys

IP addresses 3.109.16.140 and 35.200.187.59 were
behind the most usage aempts and tried to access
data with our key. We suspect they’re the same actor. On
the day of the key publication, they tried the same calls
only milliseconds apart. Both IPs are located in Mumbai,
yet, the aacker tried to use API calls in almost all
regions, and mainly in US-East-1. The first scan from this
actor came about 5 minutes after publication.

IP address 88.99.96.208 is a scanner based in
Germany, it initiated one GetAccount call for each AWS
region, but then gave up.

IP address 54.39.190.134 is a GitGuardian scanner
(a code security platform) scanning periodically up
to 7 days after publication.

Copyright Orca Security 2023

15

Orca Security, Highly
Confidential

AWS regions where API calls were made
with leaked keys on GitHub:

GitHub Honeypot - Regions

Although we saw half of the AWS key exploitation in the US,
usage also occurred in almost every other region.

So, as we can see, no region
is out of target for aackers.

Copyright Orca Security 2023

Us-east-1 34%

Us-west-2 6%

Us-west-1 5%

Us-east-2 5%

Ap
-s

ou
th

-1
 5

%

Eu
-c

en
tra

l-1
 5

%

Ap-northeast-1 5%
Ap-northeast-2 4%Ap-southeast-1 4%

Ap-southeast-2 4%

Eu-west-1 4%

Eu-west-2 4%
Sa-east-1 4%

Ca-central-1 3%
Eu-north-1 3%Eu-west-3 4%

16

Us-east-1 34%

Us-west-2 6%

Us-west-1 5%

Us-east-2 5%

Ap
-s

ou
th

-1
 5

%

Eu
-c

en
tr

al
-1

 5
%

Ap-northeast-1 5%
Ap-northeast-2 4%

Ap-southeast-1 4%
Ap-southeast-2 4%

Eu-west-1 4%

Eu-west-2 4%
Sa-east-1 4%

Ca-central-1 3%Eu-west-3 4%From the chart on the right we can see that, as can be
expected, most of the aackers tried to use the key in
us-east-1, which is the most used AWS region. However, we did
not expect to see key usage in almost every other region as
well, including Asia Pacific (23%), Europe (20%), South
America (4%), and Canada (3%).

Bucket naming

• Because there is no easy way to find names of new or existing
S3 buckets without having the appropriate permissions to begin
with, aackers have to find accessible buckets by cycling through
possible names until they discover accessible ones (known as
brute-forcing).

• To aract our aackers, we used bucket names that included
variations of names that we know public bucket scanners are
already actively searching for, and are included on common bucket
names lists used by aackers.

AWS S3 Bucket Honeypot - Setup

2

1 We created 13
public buckets
using commonly
used names.

2 Then we granted them full List and Get permissions.

3 Next, we put AWS access keys as a canary token in each bucket, so we
would get a notification when the token was used as well as metrics on how
it was used.

Our S3 Bucket Honeypot Names

● ben-application-mirroring
● org.com
● static-assets-com
● prod-sandra-sadeh-simon
● san-gui-images
● sergei-bucket
● shen-test

● slava-images
● sophie-tests
● roy-prod-duplication
● staging-production-assets
● static-prod-bucket
● switanok-zustricz

Public access

• Our public S3 Buckets allowed anybody to list the objects
stored in the bucket and read the contents of those objects.

• This is what we wanted in our honeypot, but precisely what we
wouldn’t want on a storage bucket that contains sensitive
information.

Copyright Orca Security 2023

17

https://orca.security/resources/cloud-risk-encyclopedia/s3-bucket-allows-public-get/

Orca Security, Highly
Confidential

While we had to leave breadcrumbs to our (fake) buckets before we
saw access, we would expect there to be many more digital
breadcrumbs to legitimate buckets (such as references to bucket
names, IDs, and links) and therefore also expect them to be accessed
even faster than in our tests.

AWS S3 Bucket Honeypot - Access

While there are actors who actively scan for public buckets with
easily guessable names, only one of our buckets was actually
discovered this way.

The bucket org.com was the first to be accessed - within two
days. We suspect this is because it had a website structure
and it may have aracted possible non-malicious access.

However, when none of the other buckets were accessed, we
concluded that this was probably due to the lack of digital
‘breadcrumbs’ to our buckets, and decided to publish 9 of the
13 bucket names on forums and sites to try to aract more
potential aackers.

And voilà! After we published the names, we saw the first
access within one hour. Within three hours, six of the buckets
were accessed.

It took aackers..

Count on even faster access for legitimate buckets:

1 hour
to access S3 Buckets

Copyright Orca Security 2023

18

Orca Security, Highly
Confidential

AWS S3 Bucket Honeypot - Publication

We first posted to Pastebin in dierent geographies and languages,
which led to some access. Initially, we saw the most access from
the Chinese and Ukrainian postings, but no access from our
Russian postings.

Next, we used Twier (posted with appropriate hashtags), GitHub
(public repository with script that included the S3 bucket name), and
Reddit (posted to r/Hacking_Tutorials). This led to a large number of
logins on the shen-test bucket.

Bucket
Name

of Initial
Logins

First
Publication

Post
Views

of
Additional

Logins

Second
Publication

Post
Views

of
Additional

Logins

of Total
Logins

shen-test 0
Pastebin

(CN)
13 5 Twitter 126 50 55

org.com 23
Not

published
N/A N/A N/A N/A N/A 23

roy-prod-du
plications

0
Pastebin

(EN)
21 0 Reddit 34 7 7

sergei-buck
et

0
Pastebin

(UA)
8 6 N/A N/A N/A 6

switanok-zu
stricz

0
Pastebin

(UA)
8 3 GitHub N/A N/A 3

sophie-tests 0
Pastebin

(RU)
13 0 Twitter 25 3 3

slava-imege
s

0
Pastebin

(RU)
13 0 Twitter 25 3 3

The most accessed bucket was shen-test. Shen-test was
first published on the Chinese Pastebin, but got far more
access aempts after a post on Twier (in English).

The S3 buckets, for which we published breadcrumbs on the
Russian Pastebin weren’t accessed until we also posted
them on Twier (in English).

Copyright Orca Security 2023

19

Orca Security, Highly
Confidential

Copyright Orca Security 2023

AWS S3 Bucket Honeypot - Tactics

What actions did aackers take once they discovered the buckets?

By far the most used action was HEAD-BUCKET. This action is used
to determine if a bucket exists and whether you have permission to
access it. Other often used commands were GET_ACL (to read the
access control list of the resource), GET_Policy_Status (to find out
whether the bucket is public), and GET_Public_Access_Block (to
retrieve the PublicAccessBlock configuration of the bucket).

Scoping out the target

We can tell from the actions aackers took that they
were trying to find out whether they could access
the bucket and if it contained anything interesting:

• Is this bucket public?
• What permissions do I have?

• Which users can access the bucket?

• Is there a public access block on the bucket?

• Which instances are running in this bucket?

20

Commands used to access the S3 buckets

Orca Security, Highly
Confidential

Copyright Orca Security 2023

AWS S3 Bucket Honeypot - Key Usage

After the buckets were accessed, it took 8 hours for aackers to
start using the key. The diagram on the right shows the actions the
aackers tried to take with the leaked keys.

How did aackers try to use the keys they found?

We can see that more than half used ‘GetCallerIdentity’ (64%),
followed by ‘GetBucketLocation’ (9%), ‘Describe Instances’ (9%),
and ListBuckets (9%). As can be expected, the majority are
reconnaissance type actions.

We also saw more malicious aempts, such as ‘CreateUser’ (9%),
where an actor is trying to gain persistency in the account.

If these keys had been ‘real’ keys, no doubt the aackers could
have leveraged any information found in the buckets and caused
some real damage.

It took aackers:

8 hours to exploit keys in S3 Buckets

GetCallerIdentity
64%

GetBucketLocation
9%

Create User
9%

List Buckets
9%

Describe Instances
9%

21

Commands used with the keys exposed on S3 buckets

Orca Security, Highly
Confidential

Copyright Orca Security 2023

SSH Honeypot

3

For our SSH honeypot, we opened port 22 and allowed any
user/password combination. We did not need to wait long: we saw
access to our SSH honeypot within 4 minutes.

SSH allows for easy discovery because tools like Shodan help
perform automated scanning, similar to any other open TCP port.
The key location was /home/<user>/.aws/credentials.

Aackers were using automated logins with common usernames
like, root, admin, Admin, Administrator, and default, and obvious
passwords such as admin, 123456, root, (empty), and password.

Top usernames detected on aempted
logins through SSH

Top passwords detected on aempted
logins through SSH

It took aackers..

4mins to access our SSH honeypot

22

Orca Security, Highly
Confidential

Copyright Orca Security 2023

SSH Honeypot - Tactics

The exposed key was located in /home/<user>/.aws/credentials.
However, we did not detect any usage of the key.

From the CLI commands that were used, it seems like aackers
were more interested in the SSH compute resources to for
instance deploy cryptominers, rather than exploiting the key.

Top CLI
Commands

Aempts to run Malware
We saw hundreds of aempts by aackers to install malware on our
SSH honeypot - mainly Mirai variants. Mirai is a notorious botnet, for
which the source code was published in 2016. It frequently appears
with new variants. If this malware is installed successfully, the
machine becomes a bot that could be controlled remotely and used
for many purposes, for example as a bot in a DDoS aack.

Mirai variants detected:
771229b5b05e22d4f43e728b38c1e6f08fe7157e3c6dcade0e9af065f710f22d
77a2c317ca9d43acc056cf8217a8c838d23af63965b33dc931877360d5919b8d
C5bd2146ebbe575a47a666e07b99eb526d46d74e0d7758bf0bf5cb5b3adaa55a
36bc49ede8e0f4a54449602ca2bc681f96b14869841a243ddfb7d94fb6f28749
A04ac6d98ad989312783d4fe3456c53730b212c79a426fb215708b6c6daa3de3

Aempts to run Cryptominers
Another very known malware threat of recent years are cryptominers.
Many opportunistic aackers are using the compute resource of the
machine they exploited to mine cryptocurrency. We also saw hundreds
of aempts to install cryptominers on our machine.

Miners detected:
B9e643a8e78d2ce745fbe73eb505c8a0cc49842803077809b2267817979d10b0
28516b0407f1bef5de782d7bf916a9a7cf692ef66261768efae4423e93efe280
3a43e9ceededc2d3b8bae8f8fc8c539047cdacdd315ebef3adc6651117325e
94f2e4d8d4436874785cd14e6e6d403507b8750852f7f2040352069a75da4c00

23

Orca Security, Highly
Confidential

Copyright Orca Security 2023

For our HTTP honeypot, we
created a machine with an open
port of 80 and a simple
webpage. The secret key was
under the following path:
“hp://<IP>/credentials.html”.
We created a web server that
returned an AWS key in a
webpage when accessing it via
tcp/80 or tcp/8080.

The first access to the machine
was within 3 minutes. Most of
the access we saw was
reconnaissance on the website
and some were aempts to find
potentially vulnerable web
pages. We never saw usage of
the key that we exposed.

Top URIs accessed

It took aackers..

3 mins
to access our

HTTP honeypot

From the URIs we can see that aackers
were searching for standard HTTP paths

that could help with typical HTTP
exploitation aacks and for credentials

that could be relevant. However they were
not searching for an exposed secret, which
is why they did not discover or use the key.

HTTP Honeypot

4

24

Orca Security, Highly
Confidential

Copyright Orca Security 2023

DockerHub

5

No aackers
accessed our
Docker image

The cost/benefit ratio is far less
aractive on DockerHub and this is why

aackers are less likely to target it.

For our Docker honeypot, we created a Docker image that builds
a container with an AWS config file that contains keys, then
published it in a public Docker repository and waited..

However, the Docker image was never downloaded.

We think the reason for this is that scanning Docker is a far
harder task than for instance scanning GitHub. In GitHub, all an
aacker needs to do is scan the content that is visible on the
website. However on DockerHub, an aacker would need to
actually download the Docker image before they are able to
access any information.

This is probably why there does not seem to be automated
reconnaissance on DockerHub.

25

https://hub.docker.com/r/cocojumbo11/prod-docker-repo

Orca Security, Highly
Confidential

Copyright Orca Security 2023

ECR Honeypot

6

It appears that there is not much
automated reconnaissance on ECR
itself, but if digital breadcrumbs are
found, like on Stack Overflow, actors
come and scope out the ECR target.

It took..

4 months
before keys were

used

We created a public registry in Amazon’s Elastic Container Registry
(ECR) with names we believed would aract the interest of aackers:

1

2

3

Production-app-new

Evelyn-image

images-uploads

The images contained an embedded AWS key. For two months, we
waited for someone to download the image and use the keys. After no
actors took the bait, we decided to post a question in Stack Overflow
about the image stored in ECR with the details and authentication of
the image.

The question was immediately reviewed 20-30 times, then received
more views over time. After 4 months, we observed two actors
downloading the images and initiating calls with our keys. One of the
keys was used by an IP registered in the Asia Pacific region, another
one by an IP registered to Microsoft.

26

https://gallery.ecr.aws/l4s5v1w9?page=1
https://gallery.ecr.aws/l4s5v1w9/production-app-new
https://gallery.ecr.aws/l4s5v1w9/evelyn-image
https://gallery.ecr.aws/l4s5v1w9/images-uploads
https://stackoverflow.com/questions/74815146/ecr-image-push-fails

Orca Security, Highly
Confidential

Elasticsearch Honeypot

7
It took..

2 hours
before our Elasticsearch
honeypot was accessed

Elasticsearch is a popular data analytics and visualization
program. In the default configuration, the API endpoint for
Elasticsearch is on tcp/9200 and is unauthenticated. This
combination makes it easy for an actor to access data if the
API endpoint is open to the Internet.

For our honeypot, we created a
machine that was publicly
accessible on the well-known API
port, enabling easy access to
query the indices and contents
of our server. This Elasticsearch
instance had one index called
keys, with one entry that was an
AWS secret key. While the key
stored in our Elasticsearch
instance wasn’t accessed or
used, the instance itself was
scanned repeatedly.

Top queries on our honeypot

Most of the queries looked like scans and we didn’t see
any reference to our ‘keys’ index. Because there was

very lile indexed data, aackers may have decided that
our instance wasn’t very interesting.

27

Orca Security, Highly Confidential

Amazon EBS (AMI) Honeypot

8

Since there were no download requests, we can
assume that there is not much automated

reconnaissance on Amazon EBS.

No aackers accessed
our Amazon EBS

honeypotAmazon Elastic Block Store (EBS) is a block storage service
that allows you to use EBS Snapshots with automated lifecycle
policies to back up your volumes.

Our Amazon EBS honeypot was a snapshot of an AWS Elastic
Cloud Compute (EC2) virtual machine with access keys
embedded in the snapshot. This Amazon EBS backup of the VM
was configured to be publicly accessible without
authentication. We placed the keys in the regular
.aws/credentials directory of a VM.

The snapshot was not downloaded, and we saw no usage of
the key configured in the image.

Copyright Orca Security 2023

28

Orca Security, Highly Confidential

Redis Honeypot

9

It took aackers..

2.5 hours
to discover and access our honeypot

Aacks originated from:
Redis is a popular in-memory data structure store that enables very
fast access to stored data. In a default configuration, Redis exposes
tcp/6379 on localhost for access to the store with an assumption
that access is trusted.

It’s possible to misconfigure the service and expose the service port
to the Internet, as we did, and this enabled actors to access our
honeypot without requiring any authentication.

The Redis server was accessed within 2.5 hours of creation, but the
keys in our Redis honeypot were never used.

More than half of the aacks on our Redis port originated from China
(52%), a third of the aacks originated from the United States
(32%), and 7% from Russia. The rest of the regions accounted for
9% in total.

Copyright Orca Security 2023

29

52%

US

Russia

Japan

Canada

Hong Kong

Germany

Netherlands

South Korea

32%

7%

China

4%

1%

1%

1%

1%

1%

Orca Security, Highly Confidential

Top Calls on our Redis honeypot:

The two calls that the aackers used the most are
‘NewConnect’ and ‘Closed’, which are used for straightforward
session management. Additional calls, such as ‘INFO’ and
‘CLIENT LIST’, appear to be reconnaissance to understand
more about the asset.

Some of the other calls indicate more nefarious aempts. For
example, ‘MODULE LOAD /.red2.so’ is associated with a
campaign to exploit exposed Redis servers in order to run a
cryptominer.

This confirms that aackers are actively looking for
misconfigured and exposed Redis servers in order to run
cryptocurrency mining operations.

Redis Honeypot - Tactics

Action Count

NewConnect 15,491

Closed 15,387

info 13,458

slaveof NO ONE 754

CLIENT LIST 466

SCAN 9000 442

config set dbfilename dump.rdb 387

MODULE LOAD ./red2.so 384

MODULE UNLOAD system 384

Copyright Orca Security 2023l

30

https://www.alibabacloud.com/blog/new-outbreak-of-h2miner-worms-exploiting-redis-rce-detected_595743
https://www.alibabacloud.com/blog/new-outbreak-of-h2miner-worms-exploiting-redis-rce-detected_595743

Copyright Orca Security 2023

PO
PU

LA
RI

TY

Resource Type Time to
Access

Top Access
Action

Time to
Key Use

Top Key
Action

Aack Vector
Popularity

GitHub Service 2 minutes N/A 2 mins GetCallerIdentity High

HTTP TCP Port 3 minutes Reconnaissance No use N/A High

SSH TCP Port 4 minutes shell No use N/A High

AWS S3 Bucket Service 1 hour HeadBucket 8 hours GetCallerIdentity High/Medium

Elasticsearch TCP Port 2 hours Reconnaissance No use N/A High/Medium

Redis TCP Port 2.5 hours NewConnect No use N/A High/Medium

Elastic Container Registry Service 4 months Reconnaissance 4 months GetCallerIdentity Medium

Amazon EBS (AMI) Service No access N/A N/A N/A Low

DockerHub Service No access N/A N/A N/A Low

A comparison of access times, key usage, top actions, and aack vector popularity for each of our honeypots.

Summary

31

Orca Security, Highly Confidential

Summary

Aackers run their
operations like a business.
It basically comes down to:
“Where can I get the best
bang for my buck?”

Cost/benefit ratio:
The easier the discoverability of the resource, the more aractive the resource will
be for aackers:

Why are
some
resources
targeted
more than
others?

Copyright Orca Security 2023

• For instance, on GitHub it is easy to discover public repos and new commits in those
repos.

• If the asset is exposed to the Internet via a TCP port, such as HTTP, Elasticsearch, Redis,
and SSH these systems can be found eiciently via a resource like Shodan.

• However, for S3 buckets, there is no way to query all S3 buckets in existence and there is
no unauthenticated way to query all of a particular account’s S3 buckets; instead, a
dictionary aack approach is required, cycling through a space of potential bucket
names to find publicly accessible ones, something which takes more eort, even though
it can also be done in an automated way.

How much the resource is used:
The more users of a resource, the more chance of finding potentially useful data.

How prone it is to contain secrets:
GitHub, for instance, is very prone to contain secrets since it contains all the source
code of a project, sometimes even of an entire organization. Other resources are less
prone to this.

32

Orca Security, Highly Confidential

Summary

Most aacks originated
from IP addresses in the US,
which makes sense
because most IPs are from
the US. However, in second
place is Russia, indicating
that a fair number of aacks
are originating from there.
Surprisingly, third in the list
is the Netherlands.

Aacker
Heatmap

Copyright Orca Security 2023

IP origins
of our honeypot
aackers

Top 5 countries

United States 17M requests

Russia 15M requests

Netherlands 10M requests

China 6M requests

Lithuania 2M requests

33
15 10 5 0

Orca Security, Highly Confidential

Summary

Targeted Ports

Copyright Orca Security 2023

Port scanning is a method employed by penetration testers and malicious hackers
to examine publicly accessible devices on the Internet. Its purpose is to identify
which applications or services are actively operating on the network, often with the
intention of launching targeted aacks.

The top targeted ports in aack and scanning aempts on our SSH,
HTTP, Redis, and Elasticsearch honeypots were port 5900 Virtual
Network Computing (VNC) and port 23, as both are easily exploitable.

Port
5900

is associated with the VNC service, and is often targeted
by aackers since many users fail to change the default
configuration of port 5900, leaving their VNC servers
vulnerable to asset compromise and data leakage.

Port
23

is associated with the Telnet protocol, which connects
users with remote computers. While Telnet has largely
been replaced by SSH, some websites still use it. However,
due to its outdated and insecure nature, Telnet is
susceptible to various aacks such as credential
brute-forcing, spoofing, and credential sniing.

Top targeted ports

#1
Port 5900

24M scans

#2
Port 23
6.5M scans

34

Port 80 1.0M

Port 445 6.0M

Port 23 6.5M

Port 5900 24M

Port 443 6.0M

0 5 10 15 20 25

Port 53 1.3M

Port 22 1.7M

Orca Security, Highly Confidential

Summary

Breached Key
Reporting is Limited

Copyright Orca Security 2023

With its push protection, GitHub scans for 1,000 types of exposed
keys and if it finds one (even if it’s in the Git History), the commit is
blocked. We can confirm that the permissions of the leaked keys
were locked down as soon as the git push occurred - using the
AWS Compromised Key policy, which denies access to
destructive actions.

However, except for the breached keys from AWS in GitHub, none of
our exposed keys were reported as breached, despite the fact that
some of them were used by unauthorized users.

This means that defenders need to be extra careful not to include
secrets on S3 Buckets and Elastic Container Registry (though to a
lesser extent), since we also saw relatively fast key usage from
these resources.

Even if key permissions are locked
down (as they were on GitHub), the

key is not entirely blocked.
Although the policy denies most

permissions, an aacker can
potentially still perform malicious

actions on some services, such as
RDS, EKS, and Elasticsearch.

35

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSCompromisedKeyQuarantineV2.html

Copyright Orca Security 2023

So how can defenders up their game and stay one step ahead of the aackers? We have listed our key recommendations below:

Key Recommendations

01

02

03

Identify & Manage Your Secrets
If you don’t properly store your secrets, it’s just a maer of time before aackers will find them. Combining a strong secret management approach
using vaults with automatic identification of where secrets are stored, enables you to reduce the chance a secret is compromised and identify where
sensitive data & secrets are inadvertently exposed. With Orca’s data classification and aack path analysis, you can identify that exposure even if,
unlike our honeypots, it would require an aacker to exploit multiple weaknesses in the environment to get to the data.

Check for Secrets Before Deploying Code
It’s essential to scan for secrets prior to commiing code. For developers working in a platform like GitHub, in particular, it may make sense to
combine Orca’s Shift-Left secret scanning with pre-commit hooks, allowing you to scan code on a developer’s workstation before it’s pushed to a
platform like GitHub. When it only takes aackers minutes to find your mistake, it makes sense to go to great lengths to prevent this sort of exposure.
Even if GitHub does include push protection, it’s beer to be safe than sorry and not rely on GitHub to find your secrets, since the stakes can be high.
In addition, even though the permissions of our honeypot key were greatly reduced, this does not mean that an aacker could not still do damage
using the remaining permissions.

Check Your Git History
Don’t forget that aackers are not only scanning new GitHub commits, but are also looking for secrets in your Git History. So make sure that when
you do remove a secret from a commit, you also remove it from your history. The Orca platform detects when keys and other secrets are in your Git
History and need to be removed.

36

https://orca.security/platform/data-security-and-posture-management-dspm/
https://orca.security/resources/blog/cloud-attack-path-analysis/
https://orca.security/resources/blog/finding-secrets-and-package-vulnerabilities-with-orca/
https://pre-commit.com/
https://orca.security/resources/cloud-risk-encyclopedia/sensitive-info-in-git-repository/
https://orca.security/resources/cloud-risk-encyclopedia/sensitive-info-in-git-repository/

Copyright Orca Security 2023

04 Set Public Access Only When Strictly Needed

Although it may seem obvious that you should limit
public access to cloud assets whenever possible,
unfortunately, in real-world deployments, accidental
public exposure is common enough that aackers are
scanning for many of these exposed resources all the
time. Organizations should continually assess which
resources in their cloud estate are publicly exposed and
ensure that there is an important business reason for
doing so.

To further reduce the chances of human error opening
something to the outside world, it also makes sense to
lock down cloud environments so that changes are
made as code (“Infrastructure as Code”, or IaC). This can
be combined with security policy scanning of IaC
artifacts to ensure that mistakes are caught &
addressed before they’re deployed in the cloud.

Having a cloud security solution in place that can alert when assets
are publicly exposed is essential.

37

Key Recommendations

https://orca.security/resources/blog/how-orca-secures-infrastructure-as-code-iac/
https://orca.security/resources/blog/how-orca-secures-infrastructure-as-code-iac/

Copyright Orca Security 2023

05

Having a cloud security solution in place that can alert when assets
are publicly exposed is essential.

Follow “Security by Obscurity”
We saw that aackers often take an opportunistic approach and try to guess usernames, passwords, and asset names by simply going
down a list of the most commonly used names. For instance, with our SSH honeypots, aackers were simply trying the ones that were the
most commonly used.

As defenders, it is therefore recommended to use obscure usernames and asset names that cannot easily be guessed (admin as a
username should be o the table, and customer-database is not a great name for a bucket either). Although this should of course not be
your only security recourse, the more diicult you can make it for the aacker, the sooner they will get tired and move on to the next target.

06
Bolster Authentication and Limit Authorization
One of the commonalities across our honeypots was that they had weak authentication – while this is what we wanted in a honeypot, it
is a common contributing factor in security incidents. For those assets that must be exposed to the Internet, ensure that strong
authentication is enabled. These options dier from service to service but may include certificate-based authentication and, if the
service is accessed directly by humans, multi-factor authentication (MFA).

Additionally, where possible, ensure that the accounts that connect to the service have the minimum possible access. Limiting the
scope of authorization can help to reduce the impact of an aacker managing to authenticate to the service.

38

Key Recommendations

Copyright Orca Security 2023

07
Monitor for Malicious Process Execution and Malware
For those services where process execution is a possibility, monitor the
systems for abnormal execution and potentially malicious files &
processes. SSH is a particular risk here as it is, explicitly, a shell for
executing things. However, other services may also explicitly or, via a
vulnerability, allow an aacker to execute code. In our Redis honeypot, we
saw evidence of an aempt to execute a cryptominer.

08
Assess and Patch Vulnerabilities
Vulnerability assessment and patching should be a priority for assets
directly exposed to the Internet. Common Vulnerabilities and Exposures
(CVEs) that allow for remote code execution or privilege escalation may be
used by aackers to bypass many of our other recommendations.

09
Implement Port Hygiene
Determine which ports are necessary for your specific applications and
services to function properly and limit access to only those applications. If
you are using cloud providers like AWS, Azure, or Google Cloud, configure
security groups or firewall rules to limit access to only required ports and
restrict access from any unauthorized sources.

Cloud Detection & Response, which automatically detects
anomalies and suspicious events in cloud environments,
should be deployed to alert security teams to possible
aacks in progress.

Key Recommendations

39

https://orca.security/platform/cloud-detection-and-response-cdr/

Copyright Orca Security 2023

10
Prioritize Protection of Your Crown Jewels

We know that aackers are continually scanning cloud
environments looking for vulnerable resources. Unfortunately, it’s
just a maer of time before aackers are going to find a
vulnerability in your defense.

Therefore, instead of trying to fix all vulnerabilities and remediate all
risks, which is frankly a Sisyphean task, a beer strategy is to
ensure that your crown jewels, such as PII, intellectual property,
financial information, and other sensitive data, are protected. Any
risks that endanger your crown jewels should always be prioritized
and fixed first.

However, this does not mean that you only focus on risks that are
directly connected to your crown jewels. Aackers will take
advantage of dierent weaknesses in your environment to move
laterally and ultimately reach their target.

Therefore, it’s essential that security teams have insight into the
dierent aack paths (i.e. combinations of risks) that endanger the
organization’s crown jewels and then ensure that these aack
paths are deactivated in the fastest and most eective way.

Aack paths show the combinations of risks that are a direct path to
your critical assets

Key Recommendations

40

https://orca.security/resources/blog/multi-cloud-attack-path-analysis-for-strategic-remediation/

Copyright Orca Security 2023

Orca’s agentless cloud security platform
connects to your environment in minutes
and provides 100% visibility of all your assets
on AWS, Azure, Google Cloud, Kubernetes,
and more.

Orca detects, prioritizes, and helps
remediate cloud risks across every layer of
your cloud estate, including vulnerabilities,
malware, misconfigurations, lateral
movement risk, API risks, sensitive data at
risk, weak and leaked passwords, and overly
permissive identities.

About
Orca Security

Watch a recorded demo or take
our free cloud risk assessment.

41

https://orca.security/demo/?utm_source=orca&utm_campaign=honeypot-report
https://orca.security/lp/cloud-security-risk-assessment/?utm_source=orca&utm_campaign=honeypot-report

